Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Superradiance dynamics in semiconductor laser diode structures.

Identifieur interne : 000A32 ( Main/Exploration ); précédent : 000A31; suivant : 000A33

Superradiance dynamics in semiconductor laser diode structures.

Auteurs : RBID : pubmed:22535041

English descriptors

Abstract

We analyze theoretically the superradiant emission (SR) in semiconductor edge-emitting laser heterostructures using InGaN/GaN heterostructure quantum well (QW) as a model system. The generation of superradiant pulses as short as 500 fs at peak powers of over 200 W has been predicted for InGaN/GaN heterostructure QWs with the peak emission in the blue/violet wavelength range. Numerical simulations based on semiclassical traveling wave Maxwell-Bloch equations predict building up of macroscopic coherences in the ensemble of electrons and holes during SR pulse formation. We show that SR is covered by the Ginzburg-Landau equation for a phase transition to macroscopically coherent state of matter. The presented theory is applicable to other semiconductor materials.

PubMed: 22535041

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Superradiance dynamics in semiconductor laser diode structures.</title>
<author>
<name sortKey="Boiko, D L" uniqKey="Boiko D">D L Boiko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre Suisse d’Electronique et de Microtechnique SA, 2002, Neuchâtel, Switzerland. dmitri.boiko@csem.ch</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Centre Suisse d’Electronique et de Microtechnique SA, 2002, Neuchâtel</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Vasil Ev, P P" uniqKey="Vasil Ev P">P P Vasil'ev</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22535041</idno>
<idno type="pmid">22535041</idno>
<idno type="wicri:Area/Main/Corpus">000D55</idno>
<idno type="wicri:Area/Main/Curation">000D55</idno>
<idno type="wicri:Area/Main/Exploration">000A32</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Computer-Aided Design</term>
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Gallium (chemistry)</term>
<term>Indium (chemistry)</term>
<term>Lasers, Semiconductor</term>
<term>Models, Chemical</term>
<term>Quantum Dots</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Gallium</term>
<term>Indium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Computer-Aided Design</term>
<term>Equipment Design</term>
<term>Equipment Failure Analysis</term>
<term>Lasers, Semiconductor</term>
<term>Models, Chemical</term>
<term>Quantum Dots</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We analyze theoretically the superradiant emission (SR) in semiconductor edge-emitting laser heterostructures using InGaN/GaN heterostructure quantum well (QW) as a model system. The generation of superradiant pulses as short as 500 fs at peak powers of over 200 W has been predicted for InGaN/GaN heterostructure QWs with the peak emission in the blue/violet wavelength range. Numerical simulations based on semiclassical traveling wave Maxwell-Bloch equations predict building up of macroscopic coherences in the ensemble of electrons and holes during SR pulse formation. We show that SR is covered by the Ginzburg-Landau equation for a phase transition to macroscopically coherent state of matter. The presented theory is applicable to other semiconductor materials.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22535041</PMID>
<DateCreated>
<Year>2012</Year>
<Month>04</Month>
<Day>26</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1094-4087</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>Optics express</Title>
<ISOAbbreviation>Opt Express</ISOAbbreviation>
</Journal>
<ArticleTitle>Superradiance dynamics in semiconductor laser diode structures.</ArticleTitle>
<Pagination>
<MedlinePgn>9501-15</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1364/OE.20.009501</ELocationID>
<Abstract>
<AbstractText>We analyze theoretically the superradiant emission (SR) in semiconductor edge-emitting laser heterostructures using InGaN/GaN heterostructure quantum well (QW) as a model system. The generation of superradiant pulses as short as 500 fs at peak powers of over 200 W has been predicted for InGaN/GaN heterostructure QWs with the peak emission in the blue/violet wavelength range. Numerical simulations based on semiclassical traveling wave Maxwell-Bloch equations predict building up of macroscopic coherences in the ensemble of electrons and holes during SR pulse formation. We show that SR is covered by the Ginzburg-Landau equation for a phase transition to macroscopically coherent state of matter. The presented theory is applicable to other semiconductor materials.</AbstractText>
<CopyrightInformation>© 2012 Optical Society of America</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Boiko</LastName>
<ForeName>D L</ForeName>
<Initials>DL</Initials>
<Affiliation>Centre Suisse d’Electronique et de Microtechnique SA, 2002, Neuchâtel, Switzerland. dmitri.boiko@csem.ch</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Vasil'ev</LastName>
<ForeName>P P</ForeName>
<Initials>PP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
<PublicationType>Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Opt Express</MedlineTA>
<NlmUniqueID>101137103</NlmUniqueID>
<ISSNLinking>1094-4087</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>gallium nitride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance>indium nitride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>045A6V3VFX</RegistryNumber>
<NameOfSubstance>Indium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>CH46OC8YV4</RegistryNumber>
<NameOfSubstance>Gallium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Computer-Aided Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Equipment Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Equipment Failure Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Gallium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N">Indium</DescriptorName>
<QualifierName MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Lasers, Semiconductor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y">Quantum Dots</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pii">231893</ArticleId>
<ArticleId IdType="pubmed">22535041</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A32 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A32 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22535041
   |texte=   Superradiance dynamics in semiconductor laser diode structures.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22535041" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024